

1

REAL TIME ROAD LANE DETECTION FOR

AUTONOMOUS DRIVING USING

 COMPUTER VISION

 Mrs.M.Kalaiselvi.ME., R.Kayalvizhi, N.Devadharshini, D.Krishna

Assistant Professor, Department of Computer Science and Engineering
Vivekanandha College of Technology for Women, Tiruchengode.

 kalaiselvi.mayilsamy@gmail.com, rkayalvizhi17cser@gmail.com,

 ddnateshddnatesh@gmail.com,prikrishna1302@gmail.com

Abstract—Road Lane detection plays a vital role in the

Advanced Driver assistive systems and it improves the vehicle's

safe driving. However, Road lane detection is a complex

problem because of the varying road conditions that one can

encounter while driving. In this project, a vision based lane

detection approach capable of reaching realtime operation with

robustness to lighting change and shadows is presented. The

lane boundaries, lane direction and its radius of curvatures

were detected from a stream of videos. The video is recorded

from a camera mounted on the top of a vehicle. We have

corrected the camera distortion in the input frame. HLS

thresholding and Canny edge thresholding techniques are

carried out to the undistorted image for getting focus on the

lane lines in the binary image. Then the resulted frame is

warped into the bird’s eye by applying the perspective

transformation technique. The respective lane line pixels are

identified using sliding window approach and then left and

right lane lines are identified by fitting second-degree

polynomials. The lane curvature and deviation from the lane

centre are also computed after the identification of the lane.

The identified lane boundaries are warped back onto the input

image and the radius of lane curvature and vehicle position is

calculated and displayed with appropriate comments. Hence

this technique is enforced using python programming language

and for processing the images Open CV is used.

Keywords—Advanced Driver assistive systems, HLS

thresholding, Canny edge thresholding, binary image,

perspective transformation, sliding window, second-degree

polynomial, python programming, Open CV.

I. INTRODUCTION

With the rapid development of society, automobiles have

become one of the transportation tools for people to travel. As

more and more vehicles are driving on the road, the number of

car accidents is increasing every year. Advanced driver

assistance systems which include lane departure warning

(LDW), Lane Keeping Assist, and Adaptive Cruise Control

(ACC) can help people analyse the current driving environment

and provide appropriate feedback for safe driving or alert the

driver in dangerous circumstances.

Lane detection has been applied in an intelligent vehicle

system to reduce the chances of road accidents. Identifying

lanes on the road is a common task performed by all human

drivers to ensure their vehicles are within lane lines when

driving, so as to make sure traffic is smooth and minimise

chances of collisions with other cars in nearby lanes. Similarly,

it is a critical task for an autonomous vehicle to perform. It

turns out that recognizing lane lines on roads is possible using well

known computer vision techniques.

II. LITERATUREREVIEW

A. HuiKong,Jean-YvesAudibert,JeanPonce,2009 [1]

This paper addresses decomposing the road detection

process into two steps: the estimation of the vanishing point

associated with the main (straight) part of the road, followed by

the segmentation of the corresponding road area based on the

detected vanishing point.

B. S.SaiTej,M.Sravani,Ch.AjaySumanth,M.RamNitin2009[2]

This model is based on image processing and road

detection in self-driving vehicles. In this process of finding the

road in the image captured by the vehicle, we can use some

algorithms for vanishing point detection using Hough transform

space, finding the region of interest, edge detection using canny

edge detection algorithm and then road detection.

III. SYSTEMARCHITECTURE

IV. MODULES

Working of computer vision algorithm can be

architecture as a single model or pipeline of models. Since this

process takes a series of related steps, pipeline of models can be

considered by passing specified input each model as

corresponding previous model output.

Pipeline of Models: The road detection pipeline follows these

models:

i) Computationofcameracalibrationmatrixanddistortioncoeffici

entsfromaset of chessboard images.

ii) Applying distortion correction on raw images.

mailto:kalaiselvi.mayilsamy@gmail.com
mailto:rkayalvizhi17cser@gmail.com,
mailto:ddnateshddnatesh@gmail.com

 6

iii) Production of a bird’s eye view image via perspective

transform.

iv) Histogram of bird’s eye view image.

v) Using sliding windows to find lane line pixels.

vi) Fitting of second degree polynomials to identify left and

right lines composing the lane.

vii) Computation of lane curvature and deviation from lane

centre.

viii) Warping and drawing of lane boundaries on image as

well as lane curvature information.

Model1: Computation of camera calibration matrix and

distortion coefficients from asset of chessboard images

To compute the camera calibration matrix and distortion

coefficients, we use multiple pictures of a chessboard on a flats

face taken by the same camera. The distortion matrix was used

to un-distort a calibration image and provides a demonstration

that the calibration is correct. Open CV has a convenient

method called find Chessboard Corners that will identify the

points where black and white squares intersect and reverse

engineer the distortion matrix this way.

The cv2 find Chessboard Corners function to store the

object points (3D points in real world space) and image points

(2D points in image plane) of the grid corners. These object

points and image points are used in cv2. Calibrate Camera () to

return the calibration matrix, distortion coefficients, rotation and

translation vectors. Next we run our chessboard finding

algorithm over multiple chessboard images taken from different

angles to identify image and object points to calibrate the

camera.

Model2: Applying distortion correction on raw images

The calibration data for the camera that was collected in

model1 can be applied for raw images to apply distortion

correction. It may be harder to see the effects of applying

distortion correction on raw images compared to a chessboard

image.

Before Un-distorting raw image

After Distortion Correction

Model3: Application of color and gradient thresholds to focus

on lane lines

We apply color and edge thresholding in this section to

better detect the lines, and make it easier to find the polynomial

that best describes our left and right lanes later.

A. Color Thresholding

There are actually many ways to achieve this result, but

we choose to use HLS where S channel may provide with great

results depending on the lighting situation.

B. Edge thresholding

This section mainly performs the overall edge detection

on the frame image, using the improved canny edge detection

algorithm. The concrete steps of canny operator edge detection

area follows:

i) First, we use a Gaussian filter to smooth the image (pre

processed image). Gaussian smoothing is used to reduce the

noise from image. We use this pre-processing step to remove

many detected edges and only keep the most prominent edges

from the image.

ii) Then we use the Sobel operator to identify gradients, that is

change in color intensity in the image. Higher values would

denote strong gradients, and therefore sharp changes in color.

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#cv2.findChessboardCorners

 6

We naturally combine both color and Sobel thresholded

binary images.

Model4: Production of a bird’s eye view image via perspective

transform

Images have perspective which causes lanes lines in an

image to appear like they are converging at a distance even

though they are parallel to each other. To make them to view as

a parallel line by transforming the image to a 2D Bird’s eye

view where the lane lines a realways parallel to each other.

To perform the perspective transform, we identified 4

source points that form a trapezoid on the image and 4

destination points such that lane lines are parallel to each other

after the transformation. The destination points were chosen by

trial and error but once chosen works well for all images and

the video since the camera is mounted in a fixed position.

The perspective transform, then application of color and

gradient thresholding enable us to clearly identify the position

of the lanes on the bird's eye view image.

The perspective transform produces the following type

of images:

Bird’s eye view on curved lanes

Model5:Histogram of bird’s eye view image

The maximum probability region can be determined

by observing the histogram of the bird’s-eye view, which

produces two distinct peaks, one for the left lane and the

other for the right.

Once the input image is preprocessed, the next step is to locate

and map the lane lanes in the image space. The approach would

be to plot a histogram of pixels that are non-zero in the lower

half of the binary image to observe the pattern. We then compute

a histogram of our binary thresholded images in the y direction,

on the bottom half of the image, to identify the x positions where

the pixel intensities are highest.

Model6: Using sliding windows to find lane line pixels

As the pixel values are now binary, the peaks can

represent where most of the non-zero pixels are located and thus

area good indicator of the lane lines. Thus, the x-coordinates

from the histogram serve as a starting point to search for the

respective lanes. The concept of sliding windows approach will

be applied here, which is essentially a window with a margin

being placed around the line’s centre.

Model7: Fitting of second degree polynomials to identify left

and right lines composing the lane

From then, we simply compute a second degree

polynomial, via num py’s poly fit, to find the coefficients of the

curves that best fit the left and right lane lines which mean the

window template is slid across the image from left to right and

any overlapping values are summed together, creating the

convolved signal. The peak of the convolved signal is where

the highest overlap of pixels are and it is the most likely

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.polyfit.html

 6

position for the lane marker. Methods have been used to

identify lane line pixels in the rectified binary image. The

left and right lines have been identified and fit with a

curved polynomial function.

Model 8: Computation of lane curvature and deviation

from lane centre

The next step is to compute the radius of curvature

which can be calculated with a circle that closely fits

nearby points on a local section of a curve. The radius of

curvature of the curve at a particular point can be defined

as the radius of the approximating circle.

 6

We took the measurements of where the lane lines are

and estimated how much the road is curving, along with the

vehicle position with respect to the centre of the lane. We

assumed that the camera is mounted at the centre of the car.

We also compute the car’s distance from the centre of the

lane by offsetting the average of the starting (i.e.bottom)

coordinates for the left and right lines of the lane, subtract the

middle point as an offset and multiply by the lane’s pixel to real

world width ratio.

Model 9: Warping and drawing of lane boundaries on image as

well as lane curvature information

Finally, we draw the inside of the lane in green and

unwarp the image, thus moving from bird’s eye view to the

original undistorted image. The fit from the rectified image has

been warped back onto the original image and plotted to

identify the lane boundaries.

V. OUTPUTSCREENSHOTS

The output will be as follows if there is a left curve ahead and

the lane area is colored with green. As the vehicle is within the

lane line so the output screen is displayed with Good Lane

Keeping. The vehicle is deviated 0.07m away from center and

the curvature range is 3948m.

TheoutputwillbeasfollowsifthereisaRightcurveahead.Thevehicle

is deviated 0.15m away from center and the

curvaturerangeis2425m.

Theoutputwillbeasfollowsifthereexistsnocurves.Thevehicleis

deviated 0.07m away from center. As the road is straight,

nocurvaturerangeisdisplayedintheoutputscreen.

VI. CONCLUSION

When we drive, we use our vision to decide where to go.

The lines on the road detected by the model that show us where

the lanes are act as our constant reference for where to steer the

vehicle. This steering is also done automatically. Naturally, one

of the first things we would like to do in developing a self-

driving vehicle is to automatically detect lane lines using

analgorithm.Thusinourprojectweproposedaroadlanedetectionby

performingcameracalibration,colorandgradientthresholding,pers

pectivetransformationandslidingwindowstodetectlanelines.Weu

sedrealtimevideosasaninputinsteadofimages also we used

second degree polynomial and histogram based approach to

detect curved roads. And it works well in all lighting

conditions.

REFERENCES

[1] ArchitRastogi,ComputerVision:LaneFindingthroughImage

 Processing, 6 Sep

 2020,https://medium.com/swlh/computer-vision-lane-

finding-through-image-processing-516797e59714.

[2] Broggi A, Caraffi C, Fedriga R.I, and Grisleri P,

“Obstacledetection with stereo vision for off-road vehicle

navigation,”IEEE International Workshop on Machine Vision

for IntelligentVehicles,2005.

[3] Chiu K.Y and Lin S.F, “Lane detection using color-

basedsegmentation,”IEEE IntelligentVehicles

Symposium,2005.

[4] General Road Detection From A Single Image, TIP-05166-

2009,ACCEPTED,HuiKong,Member,IEEE,Jean-

YvesAudibert, and Jean Ponce, Fellow, IEEE Willow Team,

EcoleNormaleSuperieure / INRIA / CNRS, Paris, France

Imagineteam,EcoledesPontsParisTech,Paris,France.

[5] Gowri Pushpa G, Sai Tej S, Sravani M, Ajay Sumanth

C.H,Ram Nitin M, “Road Detection from a picture using

ComputerVision,”IEEEProceedingsinIntelligenttransportationS

ystems,pp.456–464,2001.

[6] Kaske A, Husson R, and Wolf D, “Chi-square fitting

ofdeformabletemplatesforlaneboundarydetection,”IARAnnual

Meeting,1995.

[7] KongH,AudibertJY,andPonceJ,“Vanishingpointdetection

for roaddetection,”CVPR, 2009.

[8] McCall J.J and Trivedi M.M, “Video based lane

estimationand tracking for driver assistance:

Survey,system,andevaluation,”IEEETrans.onIntelligentTranspo

rtationSystems, pp. 20–37, 2006.

[9] SeyedMostafaLatifi,SamaneSharifiMonfared,BilalSedefand

LavdieRada,“Roadlanedetectionthroughimageandvideoprocessi

ngusingedgedetectionandHoughtransformforautonomousdrivin

gpurposes”.

[10] Sparbert J, Dietmayer K, and Streller D, “Lane

detectionand street type classification using laser

rangeimages,”IEEEProceedingsinIntelligenttransportationSyste

ms,pp. 456–464, 2001.

[11] Wang Y, Teoh E.K, and Shen D, “Lane detection

andtrackingusingb-snake,”ImageandVisionComputing,pp.269–

 6

280,2004.

